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perature (~1 hr) and stirring was continued for about 24 
hr.9 The yellow-green suspension was then diluted with 120 
ml of ether and 30 ml of 1 N sodium hydroxide solution.10 

After stirring for 15 min the red mixture was filtered 
through a fine Celite pad and the organic layer of the fil­
trate was washed with 50 ml of 1 TV NaOH, 1 0 50 ml of 0.1 
N hydrochloric acid, water, and brine, and was dried 
(MgSO^ and concentrated to give a yellow oil. The crude 
product was chromatographed on 100 g of activity III (6% 
H2O) basic alumina; elution with 5-10% EtOAc-hexane 
afforded 1.14 g of a white solid. Recrystallization from 
CCU-hexane gave 1.00 g (45%) of the allylic sulfonamide, 
mp 100-101; one more recrystallization produced crystals 
of mp 101-102°. 

This new reaction provides the first instance of direct al­
lylic amination of olefins'' and also the most reliable12 pro­
cedure for insertion of an atom into an allylic carbon-hy­
drogen bond in which the olefinic linkage retains its posi­
tion. We are exploring new variations in the substituent on 
nitrogen in the hope of further increasing the reactivity of 
these selenium imido reagents (1); this important variable is 
of course not present in the case of the corresponding oxo 
reagents. We are also pursuing the obvious extension of 
these unique bond forming processes with the goal of insert­
ing carbon into allylic carbon-hydrogen bonds.15 
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A Reiterative Functionalization of Unactivated 
Carbon-Hydrogen Bonds. Photolysis of 
a-Peracetoxynitriles 

Sir: 

Synthetically useful methodology for the introduction of 
functionality at unactivated carbon-hydrogen bonds should 
combine a high degree of efficiency and regioselectivity. 
Various approaches to this problem have relied on intramo­
lecular free radical reactions to transfer a daughter func­
tional group to a site distant from the parent functional 
group.' Additional advantage, however, would accrue to 
methodology in which the parent functional group (X) mi­
grated in course of the photoreaction (1 —• 2) and the 
daughter functional group (Y) remained at the original site. 

Table I. The Yields of a-Peracetoxynitriles RR'C(OOAc)CN 4 from 
Secondary Nitriles RR'CHCN 

R 
% isolated 
yield of 4 

CH3 

CH3 

CH, 

CH2CHjCH(CH3)j 
CH,CH,. 

CH1CH, 
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P-ClPh 
Ph 

CH j Ph 

CH1 

CH2Ph 
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Table II. The Photolysis of a-Peracetoxynitriles 4 in 0.25 M 
Benzene for 1 hr 

a-Peracetoxy-
nitrile 

4a 

4b 

5-Ketonitrile 
5 

O CN 

O CN 

CH . A ^ 

O CN 

b 

% isolated 
yield 

50 

47 

4c 

4e 

4i 

4k 

41 

4n 

4o 

10 

13 

28 

15 

22 

52 

10 

20 

26 

Subsequent repetition of this reaction (2 - * 3) would lead 
to polyfunctional molecules in a regioselective fashion. We 
now wish to report that the photolysis of a-peracetoxyni-
triles incorporates this latter advantage. 

Trapping anions of secondary nitriles with molecular 
oxygen and quenching the intermediate a-cyanohydro-
peroxide anion with acetyl chloride provided a-peracetoxy-
nitriles 4 in good yield2 (Table I). The photolysis of 4 in 
benzene or tert-buty\ alcohol using a high-pressure 450-W 
Hanovia lamp furnished 5-ketonitriles 5 regioselectively 
(Table II).3 For example, the photolysis of the a-peracetox-
ynitrile 41 prepared from 5-methyl-2-phenylhexanenitrile 
(6) provided the 5-ketonitrile 51 in 52% yield. Under the 
same conditions, the photolysis of the benzoyl, phenacetyl, 
and pivaloyl peresters derived from 6 afforded 51 in 57, 56, 
and 31% yield, respectively.4 a-Peracetoxynitriles 4 lacking 
5-hydrogens failed to produce ketonitriles of any type with 
the exception of 4m which afforded the e-ketonitrile 7 in 
10% yield. a-Peracetoxynitriles 4 possessing 5-hydrogens 
which are not oriented properly for an intramolecular hy­
drogen transfer (e.g., 4p) also failed to give 5-ketonitriles 5. 

NC 

Ph 

/ 
.CN 

Ph 

6, Z = H 
41 Z = OOAc 

51 

A mechanism5 consistent with the observed products in­
volves (1) the homolysis of the oxygen-oxygen bond in the 

a-peracetoxynitrile 4, (2) <5-hydrogen atom abstraction, and 
(3) intramolecular cyano group transfer to the radical site 
in 8 to provide ultimately the 5-ketonitrile 5. In general, the 
yields of 5-ketonitriles 5 paralleled the stability of the pre­
sumed free radical intermediate 8. For example, a-perace-
toxynitriles 4i, 4k, and 41 afforded 5-ketonitriles 5i, 5k, and 
51 in 15, 22, and 52% yields, respectively. However, a-pera-
cetoxynitriles 4n and 4o possessing benzylic 5-hydrogens 
underwent a competitive photodecarboxylation to give a-
methoxynitriles. In defense of the low yields encountered in 
certain cases, it should be noted that (1) 5-ketonitriles 5 are 
not photostable but undergo Norrish type II photocleavage6 

and (2) the cyanohydrin-ketonitrile reaction of Kalvoda7 

fails for acyclic cases where the a-peracetoxynitrile-ketoni-
trile reaction has succeeded. 

NC. ,00Ac 
O 

CN 

6 H \ , OH 
HO. 

8 
To illustrate the reiterative feature of this process the 

monofunctional nitrile 9 was transformed to the Afunction­
al nitrile 14 in five steps. The photolysis of the a-peracetox-

O 

9, Z=H 
10, Z = OOAc 

O. X) 
CN 

0 
14 

Ph I! fh z - - C N 

12, Z = H 
13, Z=OOAc 

ynitrile 10 derived from 9 in 75% yield furnished the 5-ke­
tonitrile 11 in 20% yield. An independent synthesis of 11 in­
volving the alkylation8 of hexanenitrile with 0-bromopro-
piophenone ethylene ketal and the subsequent hydrolysis of 
the ketal moiety confirmed this structural assignment. The 
introduction of an a-peracetoxy group in the ketal nitrile 12 
in 65% yield and the photolysis of the ketal a-peracetoxyni­
trile 13 provided the ketal 5-ketonitrile 14 in 26% yield. The 
appearance of a doublet at 5 1.31 in the N M R spectrum of 
14 for the terminal methyl group confirmed that the con­
version of 9 to 14 had involved two successive 5-migrations 
of a cyano group.9 

Application of this methodology to the functionalization 
of a steroid nucleus is presently under investigation. 
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Alkyl Substituent Effects in Electrophilic Substitution at 
Saturated Carbon. Inapplicability of Taft a* Values 

Sir: 

Electrophilic displacement at saturated carbon is an im­
portant process, characteristic for organometallic interme­
diates. Despite extensive studies, however, there is only lim­
ited knowledge concerning the mechanism of cleavage of 
the alkyl-metal bond, particularly with regard to structural 
variations.1-3 

We wish to report the use of alkyl substituents as sensi­
tive probes for examining electronic effects .in electrophilic 
cleavages. Mercury compounds are ideal models for or-
ganometals since they are substitution-inert and less subject 
to steric effects than other metals (due to the relatively 
large radius and two-coordination of mercury). Acetolysis 
of the dialkylmercury compounds in Table I proceeds ac­
cording to eq 1 and 2, 

R-Hg-R' + HOAc 
R'HgOAc + RH (1) 

RHgOAc + R'H (2) 

where R, R' = Me, Et, !-Pr, r-Bu, and follows first-order ki­
netics to high conversions. The pseudo-first-order rate con­
stants, k and k', are determined individually by following 
the rate of alkane liberation by gas chromatography and 
alkylmercuric acetate by its proton N M R spectrum. A 
large deuterium kinetic isotope effect in the range of 9-11 
(in HOAc and DOAc), depending on the organomercurial, 
suggests that a substantial positive charge is developed on 
mercury in the transition state.4 

Examination of the complete series of dialkylmercurials 
allows the effects of alkyl groups to be separated into two 
classes, namely, the cleaved alkyl group R and the depart­
ing alkyl group R' in eq 1. The importance of steric effects 
is shown in Table I by the reactivity of various alkyl groups 
under the conditions of a common leaving group} More 
importantly, when a particular alkyl group R is cleaved, 
the dependence of log k on the nature of the departing 
group R'Hg is in good agreement with eq 3. 

(log£/£Me) Me:Et:;'-Pr:f-Bu = 0:0.76:1.31:1.44 

= 0:0.10:0.17:0.19 
(3) 

where boldface numbers represent values after normaliza­
tion of Et = 0.10 to conform to Taft a* in eq 4. The rela­
tionship is independent of the cleaved group R as shown by 

ionization Potential of RHgMe, eV 

Figure 1. Correlation of the rates of acetolysis of MeHgR (• ) , EtHgR 
(©), and i-PrHgR (O) with the vertical ionization potentials of 
RHgMe measured by He(I) photoelectron spectroscopy. 

Taft a* 
Figure 2. Comparison of the polar effects of alkyl groups using the Taft 
a* values and those obtained from ionization potentials. Additicity ef­
fects in alkylhydrazines (O), alkyl bromides (O), aldehydes (C), and 
alcohols ( ) are from ref 8. Saturation effects in alkylmethylmercury 
( • ) and alkyltrimethyltin (©) from ref 9. (Note that linearity in the 
additivity effect would be further improved in every case by the use of 
a* = -0.20 for (-Pr.) 
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